(a) Consider

\n(b) Consider

\n(c) Consider

\nThis is equivalent to

\n(c)
$$
(-1+x+x^2) + c_2(x^2) + c_3(-1+x) = 0+0x+0x^2
$$

\nThis is equivalent to

\n(c) $(-1+x+x^2) + c_2(x^2) + c_3(-1+x) = 0+0x+0x^2$

\nThis is equivalent to

\n(d) $(-1)^2 + (-1)^2 + (-1)^2 = 0$

\nThis is equivalent to

\n(e) $(-1)^2 + (-1)^2 = 0$

\n(f) $(-1)^2 + (-1)^2 = 0$

\n(g) $(-1)^2 + (-1)^2 = 0$

\n(h) $(-1)^2 + (-1)^2 = 0$

\n(h) $(-1)^2 + (-1)^2 = 0$

\n(i) $(-1)^2 + (-1)^2 = 0$

\n(j) $(-1)^2 + (-1)^2 = 0$

\n(k) $(-1)^2 + (-1)^2 = 0$

\n(l) $(-1)^2 + (-1)^2 = 0$

\n(n) $(-1)^2 + (-1)^2 = 0$

\n(n

This becomes

$$
\begin{array}{|c|c|}\n\hline\nC_1 & +C_3 = 0 \\
\hline\nC_2 - C_3 = 0 \\
\hline\n0 = 0\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}\n\hline\nS_0 \cup \overline{\text{hs}} \cdot \\
\hline\nC_3 = t \\
\hline\nC_2 = C_3 = t \\
\hline\nC_2 = C_3 = t\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}\n\hline\nS_0 \cup \overline{\text{hs}} \cdot \\
\hline\nC_3 = t \\
\hline\nC_2 = C_3 = t\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}\n\hline\nC_3 = t \\
\hline\nC_2 = C_3 = t\n\end{array}
$$

$$
\frac{\int_{S}|\sqrt{1501}}{C_{3}=t}\n\frac{c_{3}=t}{C_{2}=C_{3}=t}\n\frac{c_{3}=t}{C_{1}=-C_{3}=-t}\n\frac{f}{f}
$$

$$
\begin{array}{l}\n\underline{Ex:} & \pm = 1, g\text{ } \text{ } \text{ } 0.005 \\
\underline{C_1} = -1, C_2 = 1, C_3 = 1 \\
S_0, -\sqrt{1 + 1} \times 1, S_3 = 0 \\
\text{Thus, } \sqrt{1, 1} \times 1, S_3 \text{ are linearly dependent} \\
(b) & \text{Since } \sqrt{1, 1} \times 1, S_3 \text{ are linearly dependent} \\
\text{Hey, can not be a basis.}\n\end{array}
$$

$$
\text{(2) We want to try and solve} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = C_1 \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} + C_2 \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}
$$

This gives
\n
$$
\begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix} = \begin{pmatrix} c_1 & 2c_1 \ 0 & 2c_1 \end{pmatrix} + \begin{pmatrix} 2c_2 & 0 \ 0 & c_1 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix} = \begin{pmatrix} c_1 + 2c_2 & 2c_1 \ 0 & 2c_1 + c_2 \end{pmatrix}
$$

This gives
\n
$$
C_{1} + 2C_{2} = 1
$$
\n
$$
2C_{1} = 2
$$
\n
$$
2C_{2} + C_{2} = 1
$$
\n
$$
2C_{3} + C_{3} = 1
$$
\n
$$
2C_{4} = 2
$$
\n
$$
2C_{5} + C_{2} = 1
$$
\n
$$
2C_{6} + C_{2} = 1
$$
\n
$$
2C_{7} + C_{8} = 1
$$
\n
$$
2C_{9} = 0
$$
\n
$$
2C_{1} + C_{2} = 1
$$
\n
$$
2C_{1} = 2
$$
\n
$$
2C_{1} = 2
$$
\n
$$
2C_{1} = 2
$$
\n
$$
2C_{2} = 2
$$
\n
$$
2C_{3} = 2
$$
\n
$$
2C_{4} = 2
$$
\n
$$
2C_{5} = 2
$$
\n
$$
2C_{6} = 2
$$
\n
$$
2C_{7} = 2
$$
\n
$$
2C_{8} = 2
$$
\n
$$
2C_{9} = 2
$$
\n
$$
2C_{1} = 2
$$
\n
$$
2C_{1} = 2
$$
\n
$$
2C_{2}
$$

 \mathbf{I}

Another way to solve this: $C_1 + 2C_2 = 1$
 $2C_1$ $C_2 = 0$
 $2C_1 + C_2 = 1$
 $D = 0$
 $E = 0$
 $E = 0$
 $E = 0$ $\left(\begin{array}{c} 1 & 2 & 1 \\ 2 & 0 & 2 \\ 2 & 0 & 0 \\ 2 & 1 & 1 \end{array}\right)$ -2R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R 2 3 R + R $R_3 \leftrightarrow R_1$
 $\left(\begin{array}{cc} 1 & 2 & 1 \\ 0 & -4 & 0 \\ 0 & -3 & -1 \\ 0 & 0 & 0 \end{array}\right)$ $\left(\begin{array}{cc} -\frac{1}{4}R_2 \rightarrow R_2 \\ -\frac{1}{3}R_3 \rightarrow R_3 \end{array}\right)$ $\left(\begin{array}{cc} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$ $-R_{2}+R_{3}$ \rightarrow R_{3} $\begin{pmatrix} 1 & 2 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 2 & 2 & 1 \ 0 & 1 & 2 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$ Γ ^o \sim echelan O = 13 shows
No solutions form So, $v \notin Span(\{v_1,v_2\})$

$$
\begin{array}{ll}\n\text{(3)} & \text{Let } \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in W. \\
\text{Then, } a - 2b + 3c = 0. \\
\text{So, } a = 2b - 3c. \\
\text{Thus, } \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2b - 3c \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2b \\ b \\ c \end{pmatrix} + \begin{pmatrix} -3c \\ c \\ c \end{pmatrix} \\
&= b \begin{pmatrix} 2 \\ b \\ c \end{pmatrix} + c \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \\
\text{So, } \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \text{span} \left(\frac{2}{3} \begin{pmatrix} 2 \\ b \\ c \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \right) \\
\text{Note that } \begin{pmatrix} 2 & -2(1) + 3(a) = 0 & \text{and } -3 - 2(b) + 3(b)^2 0 \\
\text{thus } \begin{pmatrix} 2 \\ b \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \end{pmatrix} \in W. \\
\text{So, } W = \text{span} \left(\frac{2}{3} \begin{pmatrix} 2 \\ b \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \end{pmatrix} \right) \\
\text{Let's show } \begin{pmatrix} 2 \\ b \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \end{pmatrix} \text{ and linearly independent.} \\
\text{Consider } c_1 \begin{pmatrix} 1 \\ b \\ c \end{pmatrix} + c_2 \begin{pmatrix} -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\
\text{Then, } \begin{pmatrix} 2c_1 - 3c_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c_2 \end{pmatrix} \\
\end{array}
$$

Thus,
$$
\begin{pmatrix} 2c_1-3c_2=0 \ c_1=0 \ c_2=0 \end{pmatrix}
$$

\nThe only solutions are $c_1=0, c_2=0$.
\nThus, $\begin{pmatrix} 2 \ 1 \ 0 \end{pmatrix}$, $\begin{pmatrix} -3 \ 0 \ 1 \end{pmatrix}$ are linearly
\nindependent also.
\nThus, $\begin{pmatrix} 2 \ 1 \ 0 \end{pmatrix}$, $\begin{pmatrix} -3 \ 0 \ 1 \end{pmatrix}$ are a basis
\nfor W.
\nThus, $\dim(W) = 2$.

A) This is HW 1 #2(c) B) This is HW 2 # 5

② (method ²¹ Let W= span ({^v , ,Vz}l . Since vi. V2 are linearly independent we know dim (^w) __ ² . Since ^W , = V1 - V2 , wz= Vi , w3=V,t3Vz we know We , Wz , Wz C- ^W . So, we have ³ vectors in ^a ²-dimensional vector space . Since ³⁷² by ^a theorem in class , Wywz , Wz are linearly dependent .

 $(\bigcirc)(\mathsf{Me}\, \mathsf{H}_\mathsf{P} d \; \mathsf{1}) \leftarrow \underline{\mathsf{See}\, \mathsf{next}\, \mathsf{page}}$ for method z Assume Vo EW. We can show that W is a subspace ' Via the 3 conditions method. (E) Since ✓ ◦ C- ^W and ^W is ^a subspace, i) Since V. EW and I'D I'L ve can set ve know $-V_{o}\in W.$ Inus, we consider $V_{o} = -V_{o} + V_{o} = 0$ is in W. (i) Let $V_1, V_2 \in W$. Then $V_1 = W_1 + V_2$ and $v_2 = w_2 + v_0$, where w, , wz EW. Then , $W_1 + V_2 = W_1 + W_2 + V_0 + V_0$ Since W, Wz, Vo EW, and W is a subspace, Since $w_1, w_2, v_0 \in C$, and so,
W is closed victer $+$ and so, $V_1 + V_2 = W_1 + W_2 + V_0 + V_0$ is in W. $i<$ in W. $V_1 + V_2 = W_1 + W_2 + V_3 + V_0$
(iii) Let $V \in W$ and $\alpha \in F$. Then $V= W + V_0$ where WEW. Then , $\alpha v = \alpha w + \alpha v_0.$ where $W \in W$. $(P^{(N)})$ W is a subspace,
Since W , $V_0 \in W$ and W . And again we know ✗ ^w and ✗Vo are in W . And again since ✗w and dvo are in W. Mind W is a subspace
and dvo are in W and W is a subspace x^{w} and x^{v} are x^{n} w^{w} . So,
we know x^{w} to $v_{0} \in W$. So, av EW. WTOWE (i), (ii), (iii), W) ر (iii) _د (iii W is a

(b) (Method 2)

\nAssome V₀ EW.

\nOne can actually show that W=W₀ and then sine W is a subspace, so if W₀ and then sine W is a subspace, so if W₀ and W is a subspace, so if W₀ and W is a subspace, by
$$
W = (W - V_0) + V_0
$$
.

\nSince V₀ EW and W is a subspace, -V₀ EW.

\nSince W and -V₀ are in W and W is a subspace, we have $W - V_0 = (W - V_0) + V_0$.

\nSo, W \nsubseteq W = (W - V_0) + V_0

\nSo, W \nsubseteq W.

\nThus, W \nsubseteq W

\nSo, W \nsubseteq W.

\nSince W

\nWe will find W is a subspace, we have $W = W$ and W is a subspace, we have $W = W$.

\nSince W \nsubseteq W.

\nThus, W \nsubseteq W.

\nSince W \nsubseteq W.

\nSince W \nsubseteq W.

\nSince W \nsubseteq W.

\nThus, W \nsubseteq W.

\nSince W \nsubseteq W.

\