Topic 5-Eigenvalues, Eigenvectors,

Def: Let V be a vector space over a field F. Let T: V->V be a linear transformation. If XEV with $x \neq 0$ and $T(x) = \lambda x$ where $\lambda \in F$, then we call x an eigenvector of T and λ the eigenvalue corresponding to X. $(x \neq 0)$ Note: X=0 is allowed is not allowed $x = 0$

$$
\begin{aligned}\n& \frac{E\times2}{\log P} \quad \text{Let } V = \mathbb{R}^2 \quad \text{and} \quad F = \mathbb{R}.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n& \frac{E\times2}{\log P} \quad \text{Let } V = \mathbb{R}^2 \quad \text{be given by} \\
& \frac{E\times1}{\log P} \quad \text{We have} \\
& \frac{E\times2}{\log P} \quad \text{We have} \\
& \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \\
& \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \\
& \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \\
& \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \\
& \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \\
& \frac{E\times1}{\log P} \quad \text{and} \quad \frac{E\times1}{\log P} \quad \text{
$$

③ Ex: Let $V = P_{2}$ $(R) = \{a+bx+cx^{2} | a,b,c \in \mathbb{R}\}$
 $(R) \rightarrow P_{2}(R)$
 $b x + c x^{2} = b + 2c x$
 $b x + c x^{2} = b + 2c x$
 $b x + c x^{2}$
 $b x + c x^{2}$
 $b x + c x^{2}$
 $c x + c x^{2}$
 $d x + c x^{2}$
 $e x + c x^{2}$
 $f x + c x^{2}$
 $g x + c x^{2}$
 $h x + c x^{$ $F = R$ can $T : P_{2}$ $(R) \longrightarrow P_2(R)$
 $(b \times +c \times^2) = b+2c \times \int_{\alpha}^{c \alpha} f h is \text{ is }$ this is
a linear $T(a+bx+cx^2)$ [Note that $T(f) = f'$] transformation $P_{2}(\mathbb{R})$ $P_2(R)$
a+bx+cx² T : r_2 ($\vert R \rangle$ + r_2 ($\vert R \rangle$)
 r_3 (a + b x + c x²) = b + 2 c x a linear
 r_3 of the + hat $T(f) = f$)
 r_2 ($\vert R \rangle$)
 r_3 ($\vert R \rangle$)
 r_4 in this is
 r_5 a linear
 r_6 in the that $T(f) = f$)
 r_2 ($\vert R \rangle$ $1-$

Note that $T(1) = 0 = 0.1$ $\sum_{i=1}^{n}$ 1 is an eigenvector with eigenvalue $\lambda = 0.$

Recall: A diagonal matrix has
The form
$$
\begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}
$$

$$
EX_{0}^{c} \Leftrightarrow Let T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$
\nbe given by $T(\begin{matrix} a \\ b \end{matrix}) = (\begin{matrix} a+3b \\ 4a+2b \end{matrix})$
\nWe saw on Monday that
\n(-1) and (3) are eigenvectors for T.
\nYou can check that (-1), (3) are
\nlinearly independent and thus since
\nlinearly independent and thus since
\ndim $(\mathbb{R}^{2}) = 2$ they form a basis for \mathbb{R}^{2} .
\ndim $(\mathbb{R}^{2}) = 2$ they form a basis for \mathbb{R}^{2} .
\nLet $\beta = [(-1), (\begin{matrix} 3 \\ 4 \end{matrix})$.
\n $[e + \beta] = [(-1), (\begin{matrix} 3 \\ 4 \end{matrix})$.
\n $T(-1) = (-2) = -2(-1) = -2 \cdot (-1) + 0(\begin{matrix} 3 \\ 4 \end{matrix})$
\n $T(-1) = (-2) = -2(-1) = -2 \cdot (-1) + 5 \cdot (\begin{matrix} 3 \\ 4 \end{matrix})$
\n $T(\begin{matrix} 3 \\ 4 \end{matrix}) = (\begin{matrix} 15 \\ 20 \end{matrix}) = 5 \cdot (\begin{matrix} 3 \\ 4 \end{matrix}) = 0 \cdot (-1) + 5 \cdot (\begin{matrix} 3 \\ 4 \end{matrix})$
\nFug β in \mathbb{R}

Thus,
$$
[\tau]_p = \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix}
$$

\nSo, T is diagonalizable.
\nWhy is this useful?
\nLet $V_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $V_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. We know
\n $p = \begin{pmatrix} v_1, v_2 \end{pmatrix}$ is a basis for R².
\nGiven any $x \in \mathbb{R}^2$ we can write
\n $x = C_1V_1 + C_2V_2$. Then,
\n
$$
T(x) = T(c_1V_1 + c_2V_2)
$$
\n
$$
T(x) = T(c_1V_1 + c_2V_2)
$$
\n
$$
T(x) = \frac{4}{5}C_1(T(v_1) + c_2(T(v_2))
$$
\n
$$
T(v_1) = -2V_1 = -2C_1V_1 + 5C_2V_2
$$
\n
$$
T(v_2) = -2C_1V_1 + 5C_2V_2
$$
\n
$$
T(v_1) = -2V_1 = -2C_1V_1 + 5C_2V_2
$$
\n
$$
T(v_2) = V_1 + V_2 = \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 5 & 2 \end{pmatrix}
$$

Theorem: Let V be a finite- \bigoplus dimensional vector space over ^a field F. Let T : ✓ [→] ^V be ^a linear transformation. T is diagonalizable iff there exists an ordered basis f here ex
 $\beta =$ $\begin{bmatrix} v_1 \end{bmatrix}$ V2 , . . . , Vn] of ^V .
Consisting of eigenvectors \overline{f} Moreover, i f this is the case then X , ⁰ Xz ⁰ • . ◦ ⁰ O 0 . ∙ ∙ 0 $[T]_{\beta}=\left(\begin{array}{cccc} 0 & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n} \\ 0 & 0 & \lambda_{3} & \cdots & \lambda_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n} \end{array}\right)$ • • ? .
. o .
0 o ° $\begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 &$ ^O ^O ^O • ◦ ° ✗ n where λ_i is the eigenvalue corresponding to V..

$$
\frac{\text{proof:} \quad \top \text{ is diagonalizable}}{\int f + \text{there exists an ordered basis}} \quad \text{(8)}
$$
\n
$$
\frac{\pi f}{\pi} = [v_1, v_2, \dots, v_n] \quad \text{of} \quad V \quad \text{such that}
$$
\n
$$
[T]_p = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix} \in \begin{bmatrix} \text{if} \\ \text{if} \\ \text{if} \\ \text{diagonal} \\ \text{diagonal} \end{bmatrix}
$$
\n
$$
\text{where } \lambda_1, \lambda_2, \dots, \lambda_n \in F
$$
\n
$$
f + \text{there exists an ordered basis}
$$
\n
$$
f = [v_1, v_2, \dots, v_n] \quad \text{of} \quad V \quad \text{such that}
$$
\n
$$
T(v_1) = \lambda_1 V_1 + 0 V_2 + 0 V_3 + \dots + 0 V_n
$$
\n
$$
T(v_2) = 0 V_1 + 0 V_2 + \lambda_3 V_3 + \dots + 0 V_n
$$
\n
$$
T(v_3) = 0 V_1 + 0 V_2 + \lambda_3 V_3 + \dots + 0 V_n
$$
\n
$$
T(v_n) = 0 V_1 + 0 V_2 + 0 V_3 + \dots + \lambda_n V_n
$$

 $\begin{array}{ccc} - & 77. \end{array}$

iff there exists an ordered basis $\left(\begin{array}{c} 0 \end{array} \right)$ $\beta = [\gamma_1, \gamma_2, \cdots, \gamma_n]$ of V consisting of eigenvecturs of \top where $T(V_{i}) = \lambda_{i}V_{i}$ Iso each di is an eigenvalue for V_{λ} \Box

Why is this useful? Let $T:V\rightarrow V$ be a linear transformation and $\beta = [v_1, v_2, \ldots, v_n]$ be an ordered. basis of eigenvectors with eigenvalues λ_{λ} . Let $X \in V$.
Express $X = C_1V_1 + C_2V_2 + \cdots + C_nV_n$ So, $T(x) = T(c_1v_1 + c_2v_2 + \dots + c_nv_n)$ T linear = $c_1T(v_1) + c_2T(v_2) + ... + c_nT(v_n)$
 T linear = $c_1 \lambda_1v_1 + c_2\lambda_2v_2 + ... + c_n\lambda_nv_n$ $f(x)=\lambda x^2+\lambda y^2$

Let's learn how to find the $\begin{pmatrix} 0 \end{pmatrix}$ Eigenvalues and Eigenvectors Theorem: Let V be a finite-dimensional vector space over a field F. Let T: V-JV be a linear transformation. 1. $y = \frac{1}{2}$

Let β and δ be ordered bases

for V. Then,

det $(TJ_{\beta}) = det (TJ_{\alpha})$ proof: [HW 5 #4] We have that det $(\tau J_{\beta}) = det (\tau J_{\gamma}^{\beta} [\tau J_{\gamma} [I_{\beta}^{\gamma}]$ $\frac{\overline{a}}{det(AB)}\frac{det(C\overline{a}B)}{det(C\overline{a}B)}det(C\overline{a}B)det(C\overline{a}B)$
= $det(C\overline{a}B)det(C\overline{a}B)det(C\overline{a}B)det(C\overline{a}B)$
= $det(AB)$ =det(A)det(B) = det ([T]x) det ([I]8 [I] =)

The previous theorem
makes the next definition
well-defined.
Def: Let V be a finite-The previous theorem
makes the next definition
well-defined.

Def: Let V be a finitedimensional vector space over a field F. Let ^T : ✓ [→] ^V be a linear transformation. The determinant of ^T is defined to be aed to be
det $(T) = det$ ($[T]$ β) Where is any ordered basis for V.

Ex: Recall (13) $P_2(R) = \{a+bx+cx^2 | a,b,c \in \mathbb{R}\}\$ Let $T: P_2(\mathbb{R}) \rightarrow P_2(\mathbb{R})$ be given by $\tau(a+bx+cx^2) = b+2cx$ T is a linear transformation. Let's calculate det (T) .
Let's pick $\beta = \begin{bmatrix} 1 & x & x \\ y & x & y \end{bmatrix}$ (ie the standard basis) $T(1) = 0 = 0.1 + 0. x + 0. x^{2} - 1
\nT(x) = 1 = 1.1 + 0. x + 0. x^{2} - 1
\nT(x^{2}) = 2x = 0.1 + 2. x + 0. x^{2} - 1$ $T(x')=cx-1$
Thus $[T]_p = [T]_p^p = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

Then, $det(T) = det \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = 0$ If a matrix has of zeros, then expand
on
column) its determinant We will need the fillowing: Let V be a finite-dimensional
vector space over a field F and T: V-V be a linear transformation. T is $1-1$ iff det $(\tau) \neq 0$. proof: $By Hw$ 3#6(b), since $T:V\ni V$
we know T is $I-I$ iff T is onto.
By the $\frac{1}{5}$ #5(a), det(T)#0 iff T is 1-1 and onto. Be

Theorem: Let V be a finite-15 dimensional vector space over a Field F. Let T:V-V be a linear transformation. Then, the following are equivalent: 4 TFAE (1) There exists an eigenvector $X\in V, X\neq 0,$ of T with eigenvalue X. $2 det(T-\lambda I) = 0$ $(3N(T-\lambda I)+\{0\})$ $T-\lambda I: V \rightarrow V$ $\begin{bmatrix} I: V \rightarrow V \\ iS \text{ the } \\ i\text{ density} \\ f\text{ can shown in } I \text{ as } I \text{ on } I \text{$ I TFAE Means $(T-\lambda I)(x)$ is true then $= T(x) - \lambda I(x) = T(x) - \lambda x$ they are all $+rvc$

 $\overbrace{D}^{T^{\prime} \circ \circ f}$ (16) We will ill
this like this $\mathbb{C}_{\geq 0}$ prove S That is, Suppose ^① is true . there exists xeV , and $\lambda \in F$. $xist^s \times e^{v}$
where $T(x) = \lambda x$ where $T(x) = \lambda x$ and $T(T)$
 $T(x) = \lambda T(x)$ + $T(x) = x$ $x \neq 0$, Then, $T(x) = \lambda T(x)$ + $T(x) = \lambda + (x)$
 $T(x) - \lambda \pm (x) = 0$. $\lambda \uparrow(x) = 0$
 $\lambda \uparrow(x) = 0$ So, $(\times) =$
 (\times) Thus, (T- $\begin{array}{l} \Gamma), \\ \lambda\Gamma) \neq \{\begin{array}{c} \gamma \\ \delta \end{array}\} \end{array}$ $x \in N(T -$ So, $Sine \times \neq 0, N(T \bigvee$ $(T-\lambda T)$ $T-\lambda T$

 $proot that$ 3 \rightarrow 2): $Suppose$ \bigcirc is true, that is $Suppose$ (3) is true, that is
 $N(T-\lambda I) \neq \{ \begin{matrix} 3 \\ 0 \end{matrix} \}$ for some $\lambda \in F$. $Recall$ that \vec{O} \in N(T- λ I) because $T-\lambda$ I is a linear transformation and so by and so by H_{W} 3 # $1(a)$, $(T-\lambda\text{I})(0)=0$. Since N(T- λI) \neq { 3 } there $exists$ $X \in V$ with $X \neq 0$ and $x \in N(T \lambda$ I). Then, $(T-\lambda I)(x) = 0.$ Then, $(1-\lambda+1)$, λ , λ = $\vec{0}$ = $(T-\lambda+1)(\vec{0})$.
Thus, $(T-\lambda+1)(\lambda) = \vec{0}$ = $(T-\lambda+1)(\vec{0})$. Since $x \neq \overrightarrow{0}$ this shows that Le 1 is not une-to-one. By our earlier discussion, $det(T-\lambda I) = 0.$

Proof	That (2) π ?	16
Suppose (2) is π ve, π the is $\lambda \in F$.		
By our previous discussion	$T-\lambda$	
By our previous discussion	$T-\lambda$	
This will lead to $N(T-\lambda I) \neq \{\delta\}$.		
This will lead to $N(T-\lambda I) \neq \{\delta\}$.		
Since $T-\lambda I$ is not one-to-one.		
Since $T-\lambda I$ (x_1 , x_2 with $x_1 \neq x_2$		
and $(T-\lambda I)(x_1) = (T-\lambda I)(x_2) = 0$		
Then, $(T-\lambda I)(x_1) - (T-\lambda I)(x_2) = 0$		
Since $T-\lambda I$ is a linear transformation,		
Since $T-\lambda I$ (x_1-x_2) = 0		
Thus, $x_1-x_2 \in N(T-\lambda I)$ and $x_1-x_2 \neq 0$.		
Since $x_1 \neq x_2$ we have $x_1 - x_2 \neq 0$.		

④ $Let x = X_1 - X_2.$ $x \neq \vec{0}$ and $(T-\lambda \vec{\perp})(x)=0$. Then, λ $\Gamma(x) = 0$. $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$ $T(x)$ - $\zeta_{\mathfrak{v}, \mathfrak{v}}$ $T(x) - \lambda + (x) -$
 $T(x) = \lambda T(x)$ $I(x)=x$ Thus, $T(x) = \lambda x$ Hence, $x \neq 0$ is an eigenvector ζ o, of T with eigenvalue λ . $\frac{1}{2}$

Theorem: Let V be a finite-④ dimensional vector space over a field F. Let T : ✓ [→] ^V be a linear transformation. Let ^p be an ordered basis for V. Then , $\det(T-\lambda T) = det \left(\begin{bmatrix} T \end{bmatrix} B^{-1}$ λ In) where In is the identity matrix Where $\frac{1}{n}$ is included in Where I_n is the
 w_iH_n $n = \dim(V)$.
Recall $I: V \rightarrow V$ where $I(x)=x$ for all $x \in V$.

We have that $Proof$: $det(T-\lambda I)=\overbrace{det(I-\lambda I)}^{defofdet}T-\lambda I_{\beta}$ $\frac{1}{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c}\n\overline{\begin{array}{c$ $\frac{1.38 \cdot L^{-3}\beta}{[cT]_{\beta}c[T]_{\beta}} = det(\Gamma T)_{\beta} - \lambda T_{n}$ $\left\langle \frac{\sqrt{2}}{2}\right\rangle$ $\boxed{\frac{Hw}{L}P_{\beta}=I_{n}}$

Vet: Let V be a finite-dimensional (22) Vector space over a field F and $let T: V \rightarrow V be a linear transformation.$ Let λ be an eigenvalue of T. $E_{\lambda}(T) = \begin{cases} x \in V \end{cases} \T(x) = \lambda x$ Define $= N(T-\lambda I)$ $T(x)=\lambda x$
 $T(x)-\lambda x=0$ $E_{\lambda}(T)$ is called the $\begin{pmatrix} T(x)-\lambda T(x)=0 \\ (T-\lambda T)(x)=0 \end{pmatrix}$ eigenspace of T The dimension corresponding to 2. the geometric of E, (T) is called multiplicity of λ . · EXLT) is a subspace of V [HW 5] $E_{\lambda}(T)$ consists of \overrightarrow{O} and all the eigenvectors corresponding to 2.

Def: Let V be a finite-dimensional (23) vector space over ^a field F. let T : ✓ [→] ^V be ^a linear transformation . Lef β be an ordered basis for V. Then the function Let n= dim (V) . $f_{\tau}(\lambda) = det(T-\lambda I) = det(\tau I_{\beta}-\lambda I_{n})$
is called the <u>characteristic</u> is called the characteris¹ of polynomial . . $f_{\tau}(\lambda)$ are the eigenvalues \int_{0}^{1} T_{T} λ is a re eigenvalues
root of $f_{T}(\lambda)$ then it's multiplicity as a root is called called the algebraic multiplicity of do. That is, the alg. mult. σ λ σ is largest positive integer in
 $(\lambda - \lambda_0)^k$ is a factor $+hat$ (λ arg. Me integer k such
 λ_{0})k is a factor of
 λ_{1})k is a factor of

 EX° Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be given (24) by $T\left(\begin{array}{c} a \\ b \\ c \end{array}\right) = \left(\begin{array}{c} -25 \\ a+2b+2 \\ a+3c \end{array}\right)$ You can that T is ^a linear transformation . Let's find the eigenvalues, eigenvectors, etc for T. re eigenvalu Let's find the eigenvalues first, ie the roots of $f_{\tau}(\lambda)$. We need to pick a T for $V = \mathbb{R}$. We need $\bigcap_{i=1}^n P_i = \bigcup_{i=1}^n P_i$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ where $V_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ ' $V_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $V_3 =$ $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ B is the standard basis for IR? B is the stundard basis
Let's calculate $[T]$ β

We have
\n
$$
T\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
$$
\n
$$
T\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} = -2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
$$
\n
$$
T\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix
$$

$$
= det \left(\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \right)
$$
\n
$$
= det \left(\begin{pmatrix} -\lambda & 0 & -2 \\ 1 & 2-\lambda & 1 \\ 0 & 3-\lambda & 0 \end{pmatrix} - \begin{pmatrix} \frac{expand}{2} \\ 0 & 0 & \frac{2}{2} \end{pmatrix} \right)
$$
\n
$$
= -0 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 3-\lambda \end{pmatrix} + (2-\lambda) \begin{pmatrix} -\lambda & -2 \\ 1 & 3-\lambda \end{pmatrix} - 0 \cdot \begin{pmatrix} -\lambda & -2 \\ 1 & 1 \end{pmatrix}
$$
\n
$$
= -0 + (2-\lambda) \begin{pmatrix} -\lambda & 0 & -2 \\ 1 & 3-\lambda & 0 \end{pmatrix} - \begin{pmatrix} -\lambda & 0 & -2 \\ 0 & 3-\lambda \end{pmatrix} + 0
$$
\n
$$
= -6\lambda + 2\lambda^{2} + 4 + 3\lambda^{2} - \lambda^{2} - 2\lambda
$$
\n
$$
= -\lambda^{3} + 5\lambda^{2} - 8\lambda + 4
$$

Recall the rational roots theorem
\nLet
\n
$$
f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_n
$$

\nwhere $a_n, a_{n-1}, \cdots, a_{n-1} a_n$ are integers,
\n $a_n \neq 0$, $a_0 \neq 0$. If a rational
\nnumber $\frac{p}{4}$ is a root of $f(x)$,
\nthen p divides a_0 and
\n $\frac{q}{1}$ divides a_n
\nThis theorem gives you a
\nhist of the possible rational
\n g

The possible rational roots of
\n
$$
f_{\tau}(\lambda) = -\frac{\lambda^{3} + 5\lambda^{2} - 8\lambda + 4}{4}
$$

\nare $\frac{p}{4}$ where p divides 4
\nand 4 divide r - 1.
\nSo, $p = \pm 1, \pm 2, \pm 4$ and $q = \pm 1$.
\nThis gives that possible rational
\nroots are
\n $\frac{p}{q} = \pm 1, \pm 2, \pm 4$.

$$
\frac{chect}{f_{T}(1)} = -(1)^{3} + 5(1)^{2} - 8(1) + 4 = 16 \neq 0
$$
\n
$$
f_{T}(-1) = -(-1)^{3} + 5(-1)^{2} - 8(-1) + 4 = 16 \neq 0
$$
\n
$$
f_{T}(2) = 0
$$
\n
$$
f_{T}(2
$$

Since
$$
\lambda = 1
$$
 is a root of $f_{\tau}(\lambda)$ (2)
\nwe know $(\lambda - 1)$ if a factor
\nof $f_{\tau}(\lambda)$. Let's divide
\n
$$
\lambda - 1 = \frac{-\lambda^{2} + 4\lambda - 4}{-\lambda^{2} + 5\lambda^{2} - 8\lambda + 4}
$$
\n
$$
-\frac{(-\lambda^{3} + \lambda^{2})}{4\lambda^{2} - 8\lambda + 4}
$$
\n
$$
-\frac{(4\lambda^{2} - 4\lambda)}{-4\lambda + 4}
$$
\n
$$
-\frac{(-4\lambda + 4)}{0}
$$
\nThus,
\n
$$
-\lambda^{3} + 5\lambda^{2} - 8\lambda + 4 = (\lambda - 1)(-\lambda^{2} + 4\lambda - 4)
$$
\n
$$
f_{\tau}(\lambda)
$$

Recall: If
$$
\Gamma, \Gamma, \Omega
$$
 are
\nroots of $ax^2 + bx + c = 0$
\n $ax^2 + bx + c = a(x-\Gamma,)(x-\Gamma_2)$
\n $ax^2 + bx + c = a(x-\Gamma,)(x-\Gamma_2)$
\n $\Delta x^2 + bx + c = a(x-\Gamma,)(x-\Gamma_2)$
\n $\Delta x^2 + bx + c = a(x-\Gamma,)(x-\Gamma_2)$
\n $\Delta x^2 + bx + c = a(x-\Gamma,)(x-\Gamma_2)$
\n $\Delta x^2 + bx + c = a(x-\Gamma,)(x-\Gamma_2)$
\n $\Delta x^2 + bx + c = a(x-\Gamma,)(x-\Gamma_2)$
\nThus,
\n $\Gamma, (\Delta) = (\lambda - 1)(-\lambda^2 + 4\lambda - 4)$
\n $= -(\lambda - 1)(\lambda - 2)$

 $\sum_{i=1}^{n}$ From last time: Tom last time:
 $T: \mathbb{R}^3 \to \mathbb{R}^3$ $T\left(\begin{array}{c} a \\ b \\ c \end{array}\right) = \begin{pmatrix} -2c \\ a+2b+c \\ a+3c \end{pmatrix}$ $f_{T}(\lambda) = -\lambda^{3}+5\lambda^{2}-8\lambda+4$ $= -(\lambda-1)(\lambda-2)^2$ $\lambda = 2$ $\lambda = 1$ eigenvalue of T algebraic
multiplicity multiplicity as $f_{\tau}(\lambda)$

 $\left(\overline{32}\right)$ Let's calculate $E(T)$ $E_{1}(T) = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^{3} \middle| T(\begin{pmatrix} a \\ b \\ c \end{pmatrix}) = 1 \cdot (\begin{pmatrix} a \\ b \\ c \end{pmatrix})^{2} \right\}$ $T(x) = 1 \cdot x$ $= \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 \right\} \begin{pmatrix} -2c \\ a+2b+c \\ a+3c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ $\begin{array}{c}\n\Rightarrow \\
\Rightarrow \\
\left(\begin{array}{c}\n0 \\
b \\
c\n\end{array}\right)\n\in\mathbb{R}^3\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n-a-2c \\
a+b+c \\
a+2c\n\end{array}\n\end{array} =\n\begin{array}{c}\n0 \\
0 \\
0\n\end{array}$ add $\begin{pmatrix} -\omega \\ -\omega \\ -\omega \end{pmatrix}$ to both $= \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{array}{c} -a - 2c = 0 \\ a + b + c = 0 \\ a + 2c = 0 \end{array} \right\}$ following system: solve the Le $f's$ $T - \frac{a}{a} + b + c = 0$
 $A + 2c = 0$

$$
\begin{pmatrix}\n-1 & 0 & -2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0\n\end{pmatrix}
$$
\n
$$
\xrightarrow{-R_1 \rightarrow R_1} \begin{pmatrix}\n1 & 0 & 2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0\n\end{pmatrix}
$$
\n
$$
\xrightarrow{-R_1 + R_2 \rightarrow R_2} \begin{pmatrix}\n1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\xrightarrow{\text{reduced}}
$$

 $\overline{33}$

This gives
\n(a)
$$
+2c = 0
$$
 $|eading\ vaniable$
\n(b) $-c = 0$ \Rightarrow 0 \Rightarrow

Solve egns for leading variables. $\begin{pmatrix} a &=& -2 & c \\ b &=& c \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

 \bigcirc

Back substitute: $c = t$ $2b=c=1$ $0 a = -2c = -2t$

Thus, $E, (T) = \left\{ \begin{pmatrix} -2t \\ t \\ t \end{pmatrix} \right\}$ $t \in \mathbb{R}$ $=\left\{ t\begin{pmatrix} -2 \\ 1 \end{pmatrix} \middle| t\in\mathbb{R} \right\}$ = $span \{ {\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}} \}$

 $\left(35\right)$ Let $\beta,=\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$. Then B, spans $E_1(T)$ and since B, consists of one non-zero
vector, B, is a lin. ind. set. JAW S_{9} , β , is a basis for $E_1(\tau)$ The geometric multiplicity of he geometric
 $\lambda = 1$ is dim $(E_1(T)) = 1$
 $\lambda = 1$ of β_1 Let's calculate $E_{2}(T)$. $E_2(\tau) = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 \right\} \frac{\tau\left(\begin{pmatrix} a \\ b \\ c \end{pmatrix} = 2 \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix}}{\sqrt{2 \cdot \tau^2 + 2 \cdot \tau^2}}$ $=\left\{\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{pmatrix} -25 \\ a+2bt \\ a+3c \end{pmatrix} = \begin{pmatrix} 26 \\ 2b \\ 2c \end{pmatrix} \right\}$

$$
\frac{1}{\pi}\left\{\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^{3} \middle| \begin{pmatrix} -2a & -2c \\ a & +c \\ a & +c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{a d d}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c \\ a & +c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c & 0 \\ b & +c & 0 \\ 0 & +c & 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c & 0 \\ 0 & +c & 0 \\ 0 & +c & 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c \\ c & +c & 0 \\ 0 & +c & 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c \\ c & +c & 0 \\ 0 & +c & 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c \\ c & +c & 0 \\ 0 & +c & 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c \\ c & +c & 0 \\ 0 & +c & 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2b \\ c \end{pmatrix} \right)} \left\{\begin{pmatrix} -2a & -2c \\ c & +c & 0 \\ 0 & +c & 0 \end{pmatrix} \right\}
$$
\n
$$
\frac{1}{\left(\begin{pmatrix} 2
$$

 $b = t$ Set $37)$ $C = S$ Then, Where $s, t \in \mathbb{R}$ $-S$ $Q = -C$ $b = t$ $C = S$ \mathcal{S} o $E_2(T) = \left\{ \begin{pmatrix} -s \\ t \\ s \end{pmatrix} \right\}$ $s, t \in \mathbb{R}$ $=\left\{\begin{pmatrix}-S\\ 0\\ S\end{pmatrix}+\begin{pmatrix}0\\ \pm\\ 0\end{pmatrix}\right\}$ $S, t \in \mathbb{R}$ $=\left\{\left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right)+\pm\left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right)\right\} s,t\in\mathbb{R}\right\}$ $=$ span $\left(\left\{\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right\}, \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right)\right\}$

Let $\beta = \beta_1 \cup \beta_2 = \left[\begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]$ (3) One can show β is a basis for \mathbb{R}^3 . What is $[T]_{\beta}$ $\tau\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + 0 \cdot$ $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $T\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 2 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 0$ $\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $T\left(\begin{array}{c}0\\1\\0\end{array}\right)=2\cdot\begin{pmatrix}0\\1\\0\end{pmatrix}=0\cdot\begin{pmatrix}-2\\1\\1\end{pmatrix}+0\cdot\begin{pmatrix}-1\\0\\1\end{pmatrix}+2\cdot\begin{pmatrix}0\\1\\0\end{pmatrix}$

Thus, T is diagonalizable

 $\begin{bmatrix} 1 \ -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 ζ

Ex; Let $T : P_{2}(\mathbb{R}) \longrightarrow P_{2}(\mathbb{R})$ $T(f) = f'$ $T(a+bx+cx^{2})=b+2cx$ Let's find the eigenvalues of T. Let $\delta = [1, x, x^2]$ $T(1) = 0 = 0.1 + 0. x + 0. x^{2}$ Then, $T(x) = 1 = 1 \cdot 1 + 6 \cdot x + 0 \cdot x^{2}$ $T(x^2) = 2x = 0.1 + 2 \cdot x + 0 \cdot x^2$ $[T]_{\gamma} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ Thus,

Ihus, $f_{\tau}(\lambda) = det(\tau J_{\gamma} - \lambda I_{3})$ $= det \left(\left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array} \right) - \left(\begin{array}{rrr} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array} \right) \right)$ $= det \begin{pmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 2 \\ 0 & 0 & -\lambda \end{pmatrix}$ Rexpand on this column $\left(\begin{matrix} + \\ - \\ + \end{matrix} \begin{matrix} + \\ - \\ + \end{matrix} \right)$ $=-\lambda \cdot \begin{vmatrix} -\lambda & 2 \\ 0 & -\lambda \end{vmatrix} + 0$ \bigcap $=-\lambda\left[\lambda^{2}-0\right]$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -\lambda & 2 \\ 0 & 0 & -\lambda \end{pmatrix}$ $=-\lambda^3$ $= -(\lambda - \delta)^3$

Since $f_{\tau}(\lambda) = -(\lambda - 0)^3$ $\lambda = 0$ is the only eigenvalue of T)
and it has algebraic multiplicity 3. Let's calculate $E_o(T)$. $= \left\{ \begin{array}{l} (T) \\ 0 + b \times c \times c^2 \in P_2(\mathbb{R}) \end{array} \right\} T(a + b \times c \times c^2) = O(a + b \times c \times c^2)$ $E_{o}(T)$ $=\left\{a+bx+cx^{2}\in P_{2}(\mathbb{R})\left|\frac{b+2cx=0}{T}\right.\right\}$ $=\begin{cases} a & a \in \mathbb{R} \end{cases}$ $\begin{matrix} a \in \mathbb{R} \end{matrix}$ $=\left\{\alpha \cdot 1 \mid \alpha \in \mathbb{R}\right\} = span\left(\left\{1\right\}\right)\left[\begin{array}{c}\frac{b=0}{c=0}\\c=0\end{array}\right]$

Thus,
$$
p = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$
 is a basic for $E_o(T)$. (19)
\nSo, $\lambda = 0$ has geometric
\nmultiplicity dim $(E_o(T)) = 1$
\n $\begin{array}{c|c|c|c|c|c} \hline \text{Eigenvalue} & \lambda = 0 & \text{if the elements} \\ \hline \text{Eigenvalue} & \lambda = 0 & \text{if the elements} \\ \hline \text{geometric multiplicity} & 3 & \text{if the elements} \\ \hline \text{geometric multiplicity} & 1 & \text{if the number of edges, and the graph eigenvalue.} \\ \hline \text{In this example, there are an infinite number of edges, and the graph is the same than the number of edges.} \\ \hline \text{T. If, this is not the diagonalizable.} \\ \hline \text{T. If, this is not the diagonalizable.} \\ \hline \text{need} & 3 & \text{if a, and, eigenvalues.} \\ \hline \text{node} & 3 & \text{if a, and, eigenvalues.} \end{array}$

Lemma:_ Let T:v→^V be a linear transformation where ④ ^V is ^a vector space over a field F. Let V_{1} , V_{2} , . . , Vr be eigenvectors $e^{e\tau}$ v_1 , v_2 , v_3 , v_4
of T with eigenvalues λ_1 , λ_2 , ..._.
... Such that $\lambda_i \neq \lambda_j$ when it j. Then, V_1, V_2, \cdots , Vr are linearly independent. [So,
Cig Independence.
So, eigenvectors from different/distinct
eigenspaces are linearly independent proof: We prove by induction on r. r. Base case: Suppose $r=1$. Suppose ^V , is an eigenvector of ^T. By def of eigenvector V. [≠] By det ot eigenvector.
By Hw 2 # 6, $\{v, \}$ is a linearly independent set.

any k Induction hypothesis: Suppose (ys) eigenvecturs of T with distinct eigenvalues are linearly independent. Now we prove for k+1: Suppose V1, V2, 1, Vk, Vk+1 are eigenvectors of T with corresponding eigenvalues λ_{11} , λ_{21} , λ_{12} , λ_{13} , λ_{14} , λ_{15} , λ_{16} , λ_{17} , λ_{18} , λ_{19} , $if \tilde{x} \neq \tilde{y}.$ $C_1V_1+C_2V_2+...+C_kV_{k}+C_{k+1}V_{k+1}=0$ (*) Consider the equation Where $c_{1,1}c_{2,1}...c_{k+1}$ can be in F. Apply T to (*) and use the Formulas $T(v_{i}) = \lambda_{i}v_{i}$ and $T(\vec{\delta}) = \vec{0}$. This gives 7

 $46/$ We get $T(c_1V_1 + \cdots + c_{k+1}V_{k+1}) = T(\vec{0})$ which becomes
C₁ $T(V_{l}) + ... + C_{K+1}T(V_{K+1}) = 0$ Which becomes $C_1 \lambda_1 V_1 + \cdots + C_k \lambda_k V_{k+1} C_{k+1} \lambda_{k+1} V_{k+1} = 0$ $(*$ $My(highy (*)$ by λ $k+1$ to get: $C_1 \lambda_{k+1}V_1 + ... + C_k \lambda_{k+1}V_k + C_{k+1} \lambda_{k+1}V_{k+1}$ Computing (##) - (###) we get (****) $C_1(\lambda_1-\lambda_{k+1})V_1+C_2(\lambda_2-\lambda_{k+1})V_2+\cdots$ $\therefore f_{k}(\lambda_{k}-\lambda_{k+1})V_{k} = 0$

Since we have **k** eigenvechis
$$
v_1, ..., v_k
$$
 (4
with distinct eigenvalues we can
apply the induction hypothesis and
get that $v_1, v_2, ..., v_k$ are lin. ind.
Thus $(****)$ gives
 $c_1(\lambda_1 - \lambda_{k+1}) = 0$
 $c_2(\lambda_2 - \lambda_{k+1}) = 0$
 $c_k(\lambda_k - \lambda_{k+1}) = 0$

$$
Since
$$

 $\lambda_1 - \lambda_{k+1} + 0, \lambda_2 - \lambda_{k+1} + 0, ..., \lambda_k - \lambda_{k+1} + 0$

We must have $C_1 = C_2 = \cdots = C_k = 0$. $Plug this back in the $(*)$ and get$ $C_{k+1}V_{k+1} = \vec{0}$

Thus, $C_1 = C_2 = \cdots = C_k = C_{k+1}$ are the only solutions \downarrow $C_1V_1+\cdots+C_kV_k+C_{k+1}V_{k+1}=0$.

 $S_{\alpha_{1}}, V_{\alpha_{1}}, V_{\alpha_{1}} \cdots, V_{\alpha_{k}}$ are linconly independent. $\sqrt{\left(\zeta\right)^2}$

theorems Let ^V be ^a finite - (49) -dimensional vector space over a field $F.$ Let $n=dim(V)$. Let ^T :V→^V be ^a linear transformation Let $T: V \rightarrow V$ be a linear limit
Let $\lambda_{1}, \lambda_{2}, ..., \lambda_{r}$ be the distinct eigenvalues of ^T. Let hi, . . . $, n$ be their geometric multiplies, be in $\alpha_i = \dim \left(E_{\lambda_i}(\tau) \right)$ multiplieres,
For each i, let $\beta_{\lambda} = \begin{bmatrix} V_{\lambda,1} & V_{\lambda,2} \end{bmatrix}$ ◦ ° .
.
. V_{i, ni}] be an ordered basis for $E_{\lambda_{\lambda}}(T)$

Let
\n
$$
\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_r
$$
\n
$$
= [v_{1,1}, v_{1,2}, \cdots, v_{1,n_1}] \xrightarrow{\text{basic for}} F_{\lambda_1}(T)
$$
\n
$$
v_{\lambda_1 1}, v_{\lambda_2 2}, \cdots, v_{\lambda_n 2} \xrightarrow{\text{basis for}} F_{\lambda_2}(T)
$$
\n
$$
\vdots
$$
\n
$$
v_{\lambda_1 1}, v_{\lambda_2 2}, \cdots, v_{\lambda_n 2} \xrightarrow{\text{basis for}} F_{\lambda_2}(T)
$$
\n
$$
\vdots
$$
\n
$$
V_{\lambda_1 1}, V_{\lambda_2 2}, \cdots, V_{\lambda_n 1} \xrightarrow{\text{exists for}} F_{\lambda_n}(T)
$$
\nThen, β is a linearly independent set.
\n[However, β might not be a basis for

Moreover, β is a basis for ^V $\int f f + m_1 + ... + m_r = |\beta| = n$ niff ^T is diagonalize able . Proof: We first show β is a lin. ind. set. $Suppose$ $\sum_{i=1}^{n} \sum_{k=1}^{n} c_{i,k} V_{i,k} = \overrightarrow{O}$ (\ast) Where $c_{\lambda,k} \in F$. $\frac{C_{\text{DAL}}}{T_{\text{DAL}}}\cdot\text{Show }C_{\text{Ljk}}=0 \text{ for all } \text{Ljk}.$ By Hw 5 #6, $E_{\lambda i}(T)$ is a Thus, since $v_{\lambda_{j1}}, v_{\lambda_{j1}} \in E_{\lambda_{\lambda}}(T)$ Subspace of V. $W_{\lambda} = \sum_{k=1}^{N_{\lambda}} C_{\lambda j k} V_{\lambda j k}$ We Know is in $E_{\lambda_i}(\tau)$.

S₀ (*) becomes
\n
$$
W_{1} + W_{2} + ... + W_{r} = 0
$$
 (**)
\n $W_{1} + W_{2} + ... + W_{r} = 0$ (**)
\n $W_{1} = W_{2} = ... = W_{r} = 0$.
\nWe will now show that
\n $W_{1} = W_{2} = ... = W_{r} = 0$.
\nSuggest this isn't the case. By
\nreordering/renumbering if necessary,
\nthe must then exist in with
\nthe must then exist in with
\n $W_{1} + W_{2} + ... + W_{r} = 0$
\n $W_{2} = ... = W_{r} = 0$.
\n $W_{1} = 0$ if $m < \lambda \le r$
\nand $W_{\lambda} \neq 0$ if $m < \lambda \le r$
\n $W_{1} = 0$

Thus
$$
(**)
$$
 becomes
\n
$$
W_1 + W_2 + \dots + W_m = 0 \t (+**)
$$
\n
$$
B_0 + H_0 = \text{since each } W_{\lambda} \text{ is in } E_{\lambda}(\tau)
$$
\n
$$
B_0 + H_0 = \text{since each } W_{\lambda} \text{ is in } E_{\lambda}(\tau)
$$
\nand $hom = 2e_0$ we have m eigenvectors
\n $W_{1,1} \dots, W_m$ with distinct eigenvectors
\n $A_{1,2} \dots, \lambda_m$ satisfying the dependency
\nreduction $(***)$
\ni.e. $1:W_1 + 1:W_2 + ... + 1:W_m = 0$.
\nThis would contradict the previous
\nlemma.
\nThus, $W_1 = W_2 = ... = W_r = 0$
\nSo, $W_{\lambda} = \sum_{k=1}^{N_{\lambda}} C_{\lambda,k} V_{\lambda,k} = 0 \t (***)$
\nFor each λ

But by assumption,
\n
$$
\beta_{\lambda} = [V_{\lambda_{j1}}, V_{\lambda_{j2}}, ..., V_{\lambda_{j}n_{\lambda}}]
$$
\nis a basis for $E_{\lambda_{\lambda}}(T)$ and
\nhence β is a lin. ind. set.
\nThus, from $(*t^{*})$ and $\lambda_{\lambda_{\lambda_{\lambda}}}k$.
\n
$$
C_{\lambda_{\lambda}}k = 0
$$
 for all $\lambda_{\lambda_{\lambda}}k$.
\nThus, we've done if
\n
$$
\beta = \beta_{1}U_{\lambda_{\lambda_{\lambda}}}U_{\beta_{\lambda_{\lambda}}} \text{ is a lin. ind. set.}
$$

Moreover part: S ince β is a 1in . $ind.$ set and $n=$ dim (V) , β will be ^a basis $n=dim (V),$ β $N...$
for V iff $\sqrt{\beta!} = n = dim(V)$ $\begin{array}{c}\n\beta & W \\
\beta & \beta\n\end{array}$ $n_1 + n_2 + \ldots + n_r$

Now we will show
$$
n = n_1 + ... + n_r
$$
 (55)
\nif f is diagonalizable.
\n $\begin{bmatrix} Recall: n_{\tilde{x}} = dim(E_{\lambda \tilde{x}}(T)) & n=dim(V) \end{bmatrix}$
\n $(d\pi)$ Suppose T is diagonalizable.
\nThis means there exist an ordered
\nbasis Y of V of eigenectors of T.
\nbasis Y of V of eigenvectors of T.
\nThen, $Y = X_1 U X_{\tilde{x}}(T)$ for $i=1...y$ r.
\nThen, $Y = X_1 U X_{\tilde{x}}(T)$ for $i=1...y$ r.
\nThen, $Y = dim(Span(X)) = \sum_{\tilde{x}=1} dim(Span(0\tilde{x}))$
\n $n = dim(Span(S_{\tilde{x}})) \le dim(E_{\lambda \tilde{x}}(T)) = n_{\tilde{x}}$
\nand $dim(Span(S_{\tilde{x}})) \le dim(E_{\lambda \tilde{x}}(T)) = n_{\tilde{x}}$

Thus,
\n
$$
n = \sum_{i=1}^{n} dim(span(0i)) \le \sum_{i=1}^{n} n_{i} = n_{i} + ... + n_{n}
$$
\n
$$
B\cup f \text{ since } \beta \text{ is a line, ind. set with}
$$
\n
$$
n_{1} + n_{2} + ... + n_{n} \text{ elements and } n_{1} + ... + n_{n} \text{ is the line with } \text{dim}(V) = n
$$
\n
$$
m_{1} + n_{2} + ... + n_{n} \le n
$$
\n
$$
B\cup f \text{ the above two equations}
$$
\n
$$
n = n_{1} + n_{2} + ... + n_{n}
$$

(17) Suppose that
\n
$$
n = n_1 + ... + n_r
$$

\n $\frac{n}{d(n|V)}$ Hence the result in P
\n $\frac{1}{d(n|V)}$ $\frac{n}{f}$ is a least, for V
\nconsisting of eigenvectors of T.
\n(10.100)
\n(11.100)
\n(12.100)
\n(13.100)
\n(14.101)

One more thing about eigenvalues (58) 0nemorethinghe.tv be ^a finite-dimensional rector space over a field F. Let $T: V \rightarrow V$ be a linear transformation. Then : ^① Let ✗ be an eigenvalue of ^T. Then, geometric algebraic ¹ ≤ geometric
multiplicity $\leq \begin{matrix} a\cdot y\cdot b\cdot b\cdot b\cdot d\cdot y\\ m\cdot b\cdot b\cdot d\cdot b\end{matrix}$ geometric

multiplicity $\leq \frac{algeb(2i\pi)}{n\pi i}$

of λ
 $\sqrt{F_{\alpha}(T)}$ as a root as a root $dim (E_{\lambda}(T))$ of [←] haracteristic polynomial of ^T polynomian

3) T is diagonalizable iff

(algebra) m of H. $\begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$ $(9eometric molH) =$ algebraic σf x for all eigenvalues ^X .

 $(HW50(e))$ $T: P_3(\mathbb{R}) \rightarrow P_3(\mathbb{R})$ You can. Check this is transformation $T(f) = f' + f''$ Find eigenvalues Pick a basis for $P_3(\mathbb{R})$
 $B = [1, x, x^2, x^3]$ d $\begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ Make $[T]_B$ $T(1) = 0 + 0 = 0.1 + 0x + 0x^{2} + 0x^{3}$ $T(x) = 1 + 0 = 1.1 + 0x + 0x^{2} + 0x$ $T(x^2) = 2x + 2 = 2 \cdot 1 + 2x + 0x^2 + 0x$ $T(x^3) = 3x^2+6x = 0.1+6x+3x^2+0x^3$ $[T]_{\beta} = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Thus,
\n
$$
f_{\tau}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 7 \end{bmatrix} - \lambda \begin{bmatrix} 4 \end{bmatrix} \end{pmatrix}
$$

\n $= det \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$
\n $= det \begin{pmatrix} -\lambda & 1 & 2 & 0 \\ 0 & -\lambda & 3 & 0 \\ 0 & 0 & -\lambda & 3 \end{pmatrix} \begin{pmatrix} expad & -\lambda & 0 & 0 \\ 0 & -\lambda & 3 \\ 0 & 0 & -\lambda \end{pmatrix}$
\n $= -\lambda \begin{pmatrix} -\lambda & 2 & 6 \\ 0 & -\lambda & 3 \\ 0 & 0 & -\lambda \end{pmatrix} + 0 + 0 + 0$
\n $= (-\lambda)\begin{pmatrix} -\lambda & 3 \\ 0 & -\lambda & 3 \\ 0 & 0 & -\lambda \end{pmatrix} + 0 + 0$

 $= (-\lambda)(-\lambda) [(-\lambda)(-\lambda) - (3)(0)]$ $\begin{pmatrix} 61 \end{pmatrix}$ $=\lambda^{4}=(\lambda-0)^{4}$ S_0 , $\lambda = 0$ is the only eigenvalue
with algebraic multiplicity of 4. Eigenspace time!
 $E_0(\tau) = \begin{cases} a+bx+cx^2+dx^3 \\ a^2 + dx^2 \end{cases} T(a+bx+cx^2+dx^3) = O \cdot (a+bx+cx^2+dx^3)$ = $\left\{\begin{array}{c} a+bx+cx^2+dx^3\\ = 0+0x+0x^2+0x^3\end{array}\right\}$ = $\{a+bx+cx^{2}+dx^{2}\}^{\infty} = 0+0x+0x^{2}+0x^{3}$ $b + \frac{2}{2}c + 6d = 0$
 $3d = 0$ We need to solve

 $a = t$ (3) d = 0 $2C = -3d = -3(0)=0$ 0 b = -2c = -2(0) = 0 $a = t$ Solutions: $b=0$ $E_{0}(T) = \left\{ t \mid t \in \mathbb{R}^{2} \right\} = \left\{ t \cdot | t \in \mathbb{R}^{2} \right\}$ $=$ span (213)

④ S_0 , $\beta = [1]$ is a basis for $E_{o}(\lambda)$ of λ is 1 . is.
Ino Thus, geometric mult. $\lambda = 0$ eigenvalues $rac{1}{\frac{1}{2}}$ Is ^T diagonal izable ?] $\frac{basis}{E_o}$ (λ) Not enough eigenvectors . ind . Ivoi Cris
We only have I lin. We need ⁴ to $\begin{array}{l} \text{dim} \left(P_3(R) \right) \\ = 4 \end{array}$ rue inconnue de nouse dim $(P_3(\mathbb{R}))$
diagonalize T because dim $(P_3(\mathbb{R}))$ eigenvector .